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1. Introduction

Based on the AdS/CFT correspondence at the large t’Hooft coupling λ, the expectation

value of a Wilson loop C in D = 4, N = 4 Super Yang Mills theory is related to the area

A of the minimal surface whose boundary is the loop C [1]:

〈W (C)〉 = exp(−
√

λA). (λ ≫ 1) (1.1)

Recently another object was found to have a connection with minimal surfaces in

AdS space. That is entanglement entropy. Based on the AdS/CFT correspondence, when

λ ≫ 1, the entanglement entropy of region A in CFT is calculated by replacing the horizon

area in the Bekenstein-Hawking formula with the area of the minimal surface in AdS space

whose boundary is the same as that of the region A [2, 3],

〈SA〉 =
Area(γC)

4G
(d+2)
N

(λ ≫ 1), (1.2)

where G
(d+2)
N is the Newton constant in d + 2 dimensional AdS space.
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Entanglement entropy always follows a characteristic relation known as the strong

subadditivity [4]

SA + SB ≥ SA∪B + SA∩B. (1.3)

As Wilson loops and entanglement entropy are related in (1.1) and (1.2) through minimal

surfaces, Wilson loops should also obey the strong subadditivity at large λ,

〈W∂A〉〈W∂B〉 ≤ 〈W∂(A∪B)〉〈W∂(A∩B)〉. (1.4)

Indeed in this paper we point out that the strong subadditivity of Wilson loops is satisfied

if we assume minimal surface condition (1.1). We also expect Wilson loops to obey the

strong subadditivity in arbitrary coupling regions and find several evidences of it.

This inequality of Wilson loops includes many physical properties, for example, the

convexity of quark potentials, and the convexity of cusp renormalization function.

In this paper, we describe a profound feature of the strong subadditivity of Wilson

loops and study whether or not the strong subadditivity of Wilson loops is satisfied in any

coupling region. To do this, we firstly checked the strong subadditivity in the strong cou-

pling region assuming minimal surface conjecture (1.1). Secondly, usign Bachas inequality

we found that the strong subadditivity is satisfied with symmetric Wilson loops with arbi-

trary coupling constants in any dimensional space. Thirdly, we found that the inequality

is satisfied with small-deformed Wilson loops in small coupling regions in any dimension.

These evidences cause us to conjecture that the strong subadditivity for Wilson loops

is satisfied in arbitrary Wilson loops, an arbitrary coupling constant, and an arbitrary

dimension. In addition, they give us a criterion of AdS/CFT conjecture (1.1).

2. The strong subadditivity in entanglement entropy and Wilson loops

2.1 Entanglement entropy and its character

Consider a quantum mechanical system with many degrees of freedom like a field theory.

If the system is put at zero temperature, then the total quantum system is described by

the ground state |Ψ〉. When there is no degeneracy of the ground state, the density matrix

is that of the pure state

ρtot = |Ψ〉〈Ψ|. (2.1)

The von Neumann entropy of the total system is clearly zero: Stot = −tr ρtot log ρtot =

0. Next we divide the total system into two subsystems, A and Ā. In the field theory

case, we can do this by dividing physical space into two regions and defining A as the field

in one region and Ā as the field in the other region Notice that physically we do not do

anything to the system and the cutting procedure is an imaginary process. Accordingly,

the total Hilbert space can be written as a direct product of two spaces Htot = HA ⊗ HĀ

corresponding to those of subsystems A and Ā.

Now we define the reduced density matrix ρA by tracing out the Hilbert space HĀ

ρA = trĀρtot. (2.2)
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The observer who is only accessible to the subsystem A feels as if the total system were

described by the reduced density matrix ρA. Because if OA is an operator which acts

non-trivially only on A, then its expectation value is

OA = trOA · ρtot = trAOA · ρA (2.3)

where the trace trA is taken only over the Hilbert space HA.

Then we define entanglement entropy of the subsystem A as the von Neumann entropy

of the reduced density matrix ρA

SA = −trA ρA log ρA. (2.4)

This entropy measures the amount of information lost by tracing out the subsystem Ā.

One can define entanglement entropy by choosing another total density matrix than (2.1).

However, this choice is sufficient for the purposes of this paper.

Entanglement entropy satisfies many inequalities: the most important one being the

the strong subadditivity

SA + SB ≥ SA∪B + SA∩B. (2.5)

This inequality is also satisfied by any general density matrix. The strong subadditivity

is the strongest inequality of the von-Neumann entropy. Indeed, it has mathematically

been shown that the strong subadditivity in conjunction with several other more obvious

conditions (such as the invariance under unitary transformations and the continuity with

respect to the eigenvalues of ρtot) characterize the von-Neumann entropy [5].

According to AdS/CFT correspondence, any physical quantity of d + 1 dimensional

CFT theory can be gained from the dual d + 2 dimensional anti de-Sitter space (AdSd+2).

This is also the case with entanglement entropy. In [2] and [3], it is clamed that entangle-

ment entropy of d dimensional spacelike submanifold A in d + 1 dimensional CFT theory

is given by the following formula:

S(A) =
Area(γA)

4G
(d+2)
N

. (2.6)

where Area(γA) denotes the area of the surface γA, and G
(d+2)
N is the Newton constant in

the d + 2 dimensional anti de-Sitter space. The d dimensional surface γA is defined as the

surface with minimal area whose boundary coincides with the boundary of submanifold A.

The conjecture (2.6) is mathematically proved in two dimensional CFT and in general

dimensional case a good explanation is given in [6].

In addition, [7] shows a numerical evidence to prove that the holographic entanglement

entropy (2.6) follows the strong subadditivity, and [8] gives a mathematical proof of it.

2.2 The strong subadditivity of Wilson loops

From (1.1) and (1.2), the strong subadditivity of entanglement entropy (2.5) is translated

into that of Wilson loop

〈W∂A〉〈W∂B〉 ≤ 〈W∂(A∪B)〉〈W∂(A∩B)〉, (2.7)
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where W∂A is a Wilson loop around the boundary of region A. To determine regions A

and B for Wilson loops, we only consider the case where Wilson loops are in spacelike

two-dimensional flat plane.

If the left hand side and the right hand side of (1.4) are not real, then the inequality

becomes meaningless. However, when the system is invariant under charge conjugation

Aµ → −AT
µ , the value of a Wilson loop in Euclidian space is real because when subjected

to the charge conjugation we have

〈ePi
H

dxµigAµ〉 → 〈ePi
H

dxµi(−gAT
µ )〉 = 〈ePi

H

dxµigAµ〉∗. (2.8)

We also note that if Wilson loops follow only the area law and the perimeter law,

〈W∂A〉 = exp(−K1S(A) − K2L(∂A)), (2.9)

where K1 and K2 are constants and S(A) is the area of A and L(A) is the length of the

perimeter, the expectation value of Wilson loops follows the equality,

〈W∂A〉〈W∂B〉 = 〈W∂(A∪B)〉〈W∂(A∩B)〉. (2.10)

This is because

S(A) + S(B) = S(A ∪ B) + S(A ∩ B) (2.11)

L(A) + L(B) = L(A ∪ B) + L(A ∩ B). (2.12)

Therefore, the subadditivity comes from other factors than the area and the perimeter law

factor. One interesting example of the equality (2.10) is in the large N pure Yang-Mills

lattice QCD2. There, loop equations are easily solved [9, 10], and nonintersecting Wilson

loops are calculated to

W (C) =

(

1 − λa2

2

)A/a2

(λ < 1) (2.13)

W (C) =

(

1

2λa2

)A/a2

(λ > 1), (2.14)

where a is the lattice spacing. Therefore, Wilson loops follow the pure area law both in

weak coupling and in strong coupling regions. Hence, from the argument above, Wilson

loops satisfy the equality (2.10).

In the next section, we will show three important applications of the strong subaddi-

tivity for Wilson loops.

3. Application of the strong subadditivity for Wilson loops

3.1 Cusp anomalous dimensions

In this subsection, we consider the renormalization of Wilson loops in four-dimensional

Yang-Mills theory. When a Wilson loop has cusps whose angles are θk respectively, the

renormalization of Wilson loops is multiplicatively renormalizable [11, 12],such that:
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a
b

c

Figure 1: Two Wilson loops with cusp.

One’s angle is a + b and the other’s is b + c.

b

c

Figure 2: When all crossing points of two

loops are like this, the strong subadditivity

gives a stronger condition than (3.4).

〈W ren(M,C)〉 = Zper(M,C)

k
∏

Zcusp(M,θk)〈W non ren(C)〉, (3.1)

where M is a renormalization scale, and Zper is renormalization constant which comes from

perimeter, Zcusp(M,θk) is an additional renormalization constant which comes from cusps,

and W ren is finite when expressed via the renormalized charge.

By solving the Callan-Symanzik equation for Wilson loop [13] we have

Zcusp(M,γ) = gR(M)−Γcusp(γ)/Cβ , (3.2)

where Γcusp(γ) is an anomalous dimension of Zcusp(γ) and called a ”cusp anomalous di-

mension”, gR(M) is the renormalized coupling constant, and Cβ is the coefficient of the β

function:

Cβ =
11

3
Nc −

2

3
Nf . (3.3)

Now we apply the strong subadditivity of 〈W non ren(C)〉 to two Wilson loops whose

cusp angles are a + b and b + c respectively (figure 1).

Up to the second order perturbation Γcusp < 0. So when M ≫ 1 and gR(M) ≪ 1,

Z−1
cusp(M,γ) is much greater than 1. Zper should cancel each other on both sides of the

inequality, as divergence of entanglement entropy derived from perimeters cancel each other

out. Then we have

Γcusp(a + b + c) + Γcusp(b) ≤ Γcusp(a + b) + Γcusp(b + c) (3.4)

This leads to the convexity
d2

d2θ
Γcusp(θ) ≤ 0. (3.5)

Up to the second order perturbation [13] we have

Γ(2)
cusp(θ) = 4

N2
c − 1

2Nc
(θ cot θ − 1) (< 0) (3.6)

for SU(Nc) gauge theory. Then we can directly check the convexity of Γ
(2)
cusp(θ) as

d2

d2θ
Γ(2)

cusp(θ) = 4
N2

c − 1

2Nc
(θ cot θ − 1)

2

sin2(θ)
< 0. (3.7)
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T

a cb

Figure 3: Rectangular Wilson loops

Conversely, (3.4) derives the strong subadditivity when two loops have a crossing point

like figure 1, because Zcusp are main divergence parts of loops with cusps. (3.4) saturates

when a = 0 or b = 0. Therefore when all crossing points of two loops are like figure 2 (i.e.

when two loops don’t cross but just touch),1 the strong subadditivity gives a nontrivial

condition except (3.4).2

3.2 Quark potential

We consider rectangular Wilson loops shown in figure 3 where short sides of the rectangle

are a + b and b + c, and long sides of them are all T .

The value of Wilson loops W (R,T ) has a physical meaning as a quark potential V (R):

V (R) = − lim
T→∞

ln W (R,T ). (3.8)

The strong subadditivity of these Wilson loops is

V (a + b + c) + V (b) ≤ V (a + b) + V (b + c) (3.9)

This is equivalent with the convexity of quark potential

d2

d2R
V (R) ≤ 0. (3.10)

As shown in [14, 15] , one can also derive the convexity of cusp anomalous dimensions

and the convexity of quark potential from Bachas inequality, which we will consider in the

next section.

3.3 Inequality of Fµν inserted Wilson loop

Let us consider three loops C, C + δC1(x) and C + δC2(y), where δC1(x) and δC2(y) are

infinitesimal loops attached to a loop C at points x and y (x 6= y) respectively and are

located outside of C (figure 4).

1A good example is shown in the next subsection (figure 3).
2A similar situation also occurs in the case of Bachas inequality [14]
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δ 1C+  C (x)

x y

C δ 2C+  C (y)

Figure 4: Wilson loop C and its small deformed Wilson loops, C + δC1(x) and C + δC2(y).

Now we can see

Int(C + δC1) ∪ Int(C + δC2) = Int(C + δC1 + δC2) (3.11)

Int(C + δC1) ∩ Int(C + δC2) = Int(C), (3.12)

where Int(C) means the interior of C. The strong subadditivity for C + δC1 and C + δC2

is

〈W (C + δC1)〉〈W (C + δC2)〉 ≤ 〈W (C + δC1 + δC2)〉〈W (C)〉. (3.13)

Using area derivative, we can expand W (C + δC) as

W (C + δC) = W (C) + δσµν δW (C)

δσµν(x)
+

1

2

(

δσµν δW (C)

δσµν(x)

)2

+ O((δσµν)3), (3.14)

where δσµν denotes the area enclosed by δCµν .

The area derivative is given by inserting the field strength iFµν into Wilson loop:

δ

δσµν(x)
W (C) = trP(iFµν(x)ei

H

c
dξαAα), (3.15)

therefore the inequality (3.13) can be rewritten as

0 ≥ 〈W (C)〉〈trP((F · δσ)x(F · δσ)ye
i

H

c
dξµAµ)〉, (3.16)

where (F · δσ)x denotes Fµν(x)δσµν .

This inequality is fundamental for the strong subadditivity. Indeed all inequalities of

the strong subadditivity of small-deformed Wilson loops are derived from (3.16). Firstly let

us consider three loops C, C +
∑

i δCi(xi) and C +
∑

δCj(yj), where δCj(xj) and δCi(yi)

are infinitesimal loops attaced to a loop C at points xi and yj (xi and yj are all different

points) respectively and are located outside of C. The reason why we don’t have to consider

a case where δCi(xi) or δCj(yj) are inside C or a case where xi and yj are not all different

points is@that in those cases by redefining C as (C +
∑

i δCi(xi)) ∩ ( C +
∑

δCj(yj)) we

can regain the original situation.

Now the strong subadditivity is

〈W (C +
∑

i

δCi(xi))〉〈W (C +
∑

δCj(yj))〉 ≤ 〈W (C)〉〈W (C +
∑

i

δCi(xi) +
∑

δCj(yj))〉.

(3.17)
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A B

m(A)

m(A)

i

oo

i

m(B)

m(B)

Figure 5: region A, B and their minimal surfaces

Rewriting it by the operator form, (3.17) is

0 ≥
∑

i,j

〈W (C)〉〈trP((F · δσ)xi
(F · δσ)yj

ei
H

c
dξµAµ)〉. (3.18)

We can obtain this inequality from the former inequality (3.16). Other kind of small

deformed Wilson loops are obtained by summing infinite number of δCi. Therefore, the

inequality (3.16) will be the most essential inequality for the strong subadditivity of Wilson

loops. In the next section, we will give a perturbative proof of the strong subadditivity for

general small-deformed Wilson loops, which gives a proof of (3.16) as a special case.

4. Verification of the strong subadditivity of Wilson loops

In this section, we verify the strong subadditivity of Wilson loops in three ways.

Firstly, we assume AdS/CFT conjecture (1.1) and from the nature of the minimal sur-

face we prove the inequality at λ ≫ 1. Secondly, using Bachas inequality, which specially-

shaped Wilson loops satisfy, we prove the strong subadditivity of specially-shaped Wilson

loops in all coupling regions. Thirdly, we give a perturbative proof of the strong subaddi-

tivity for all small-deformed Wilson loops.

4.1 Verification from the minimal surface conjecture

Assuming AdS/CFT conjecture (2.6) in the strong coupling region, it is possible to prove

the strong subadditivity (1.4). We use the same logic as the proof for the strong subaddi-

tivity of entanglement entropy shown in [8].

Let m(A) and m(B) be the minimal surface of region A and B respectively where A

and B are interiors of Wilson loops. m(A) is divided by m(B). Let m(A)o be outside piece

of m(A) with respect to m(B) and let m(A)i be inside piece of m(A) with respect to m(B).

We also define m(B)o, m(B)i in the same way (figure 5).

Since m(A)o ∪ m(B)o is a surface whose boundary is A ∪ B, its area is bigger than or

equal to the area of the minimal surface m(A ∪ B) whose boundary is A ∪ B:

m(A)o + m(B)o ≥ m(A ∪ B). (4.1)

And more since m(A)i ∪ m(B)i is a surface whose boundary is A ∩ B, its area is bigger

than or equal to the area of the minimal surface m(A ∩ B) whose boundary is A ∩ B:

m(A)i + m(B)i ≥ m(A ∩ B) (4.2)

– 8 –
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Therefore, we have an inequality

m(A) + m(B) = m(Ao) + m(Ai) + m(Bo) + m(Bi) ≥ m(A ∪ B) + m(A ∩ B). (4.3)

The strong subadditivity can be derived from this.

4.2 Verification from Bachas inequality

4.2.1 Review of Bachas inequality

Here we review Bachas inequality. We define θ as Parity transformation along x1 axis and

region L0 L+ L− as

L0 ≡ {xµ;x1 = 0} (4.4)

L+ ≡ {xµ;x1 > 0} (4.5)

L− ≡ {xµ;x1 < 0}. (4.6)

Now let Ci be open lines which exist in L+ and let their boundaries in L0. Now we define

a function fab as

fab =

M
∑

i

kiW (Ci)ab, (4.7)

where W (Ci)ab is a Wilson line operator of Ci , ki is an arbitrary real number, and a b are

gauge indices.

Then we have

tr〈fθf †〉 = Z−1tr

∫

∏

b∈L0

dUbe
−S0

∫

∏

b∈L+

dUbf(U(b))e−S+

∫

∏

b∈L
−

dUbf(U(θb))†e−S
−

= Z−1

∫

∏

b∈L0

dUbe
−S0

∣

∣

∣

∣

∣

∣

∫

∏

b∈L+

dUbf(U(b))e−S+

∣

∣

∣

∣

∣

∣

2

≥ 0 (4.8)

where S0, S+ and S− are respectively actions in L0, L+ and L−. Substituting (4.7) we

have

tr〈fθf †〉 =
∑

ij

ki〈W (Cij)〉kj , (4.9)

where W (Cij) is the Wilson loop made by Ci and mirror image of Cj

〈W (Cij)〉 = tr〈W (Ci)W (−θCj)〉. (4.10)

Therefore the inequality (4.8) means the quadratic form (4.10) is positive definite i.e. the

determinant of the matrix 〈W (Cij)〉 is positive.

det
ij

〈W (Cij)〉 ≥ 0 (4.11)

This is Bachas inequality which was extended by Pobyltsa [14]. When M = 2 (4.11)

derives the original inequality presented by Bachas [15],

〈W (C11)〉〈W (C22)〉 ≥ 〈W (C12)〉〈W (C21)〉 (4.12)

– 9 –
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X

C

C

1

2

A

B

Figure 6: Two open lines C1 and C2 and

axis X . The interior of C1 + X is outside of

the interior of C2 + X .

A

B

X

D D12 21

Figure 7: Configuration of D12 and D21.

4.2.2 Bachas inequality and the strong subadditivity: first example

Now we will see some Bachas inequalities are equivalent to or are derived from the strong

subadditivity for some symmetric Wilson loops but in all coupling region.

Consider two open lines C1 and C2 which touch an axis X. Let

Int(C1 + X) ⊃ Int(C2 + X), (4.13)

where Int(Ci +X) is the interior of Ci +X. We consider the case where each C1’s two end

points A and B are at the same place as C2’s end points (figure 6).

As can be seen from figure 7,

D12 ∪ D21 = D11, D12 ∩ D21 = D22

are satisfied where Dij is the interior of Cij .

So now the original Bachas inequality

〈W (C11)〉〈W (C22)〉 ≥ 〈W (C12)〉〈W (C21)〉, (4.14)

is equivalent to the strong subadditivity

〈W (∂(D12 ∩ D21))〉〈W (∂(D12 ∪ D21))〉 ≥ 〈W (∂D12)〉〈W (∂D21)〉. (4.15)

This example includes examples shown in section 3.1 and section 3.2 [14, 15].

4.2.3 Bachas Inequality and the strong subadditivity: second example

Let us introduce three open lines C1,C2 and C3 which touches X-axis. Now we impose

following conditions to these lines. Firstly the interior of C1 + X is inside or outside of the

interior of C2 + X, C3 + X:

Int(C1 + X) ⊃ Int(C2 + X), Int(C3 + X) (4.16)

or

Int(C1 + X) ⊂ Int(C2 + X), Int(C3 + X). (4.17)

– 10 –
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A

B

Y

X

C1

C

C

3

2A

B

C1
C

C

2

3

Y

X

Figure 8: Three open lines: C1,C2 and C3. The interior of C1+X is inside or outside of the interior

of C2 + X , C3 + X . C2 and C3 are symmetric with respect to the Y-axis, C1 is axisymmetric with

respect to the Y-axis.

Secondly C2 and C3 are symmetric with respect to the Y-axis which is perpendicular to X

axis and C1 is axisymmetric with respect to the Y-axis. Thirdly C1, C2 and C3 share their

two end points A and B (figure 8).3

From their symmetry, we have

W (C12) = W (C21) = W (C13) = W (C31) (4.18)

W (C22) = W (C33). (4.19)

Now let us define r, t, x, p as

r = 〈W (C11)〉, x = 〈W (C12)〉 = 〈W (C13)〉
t = 〈W (C22)〉 = 〈W (C33)〉, p = 〈W (C23)〉 (4.20)

Then Bachas inequalities (4.11) for these three paths lead to

det
i,j=2

〈W (Cij)〉 = t = t ≥ 0 (4.21)

det
i,j=2,3

〈W (Cij)〉 = det

(

t p

p t

)

= t2 − p2 ≥ 0 (4.22)

det
i,j=1,2,3

〈W (Cij)〉 = det







r x x

x t p

x p t






= (t − p)[r(t + p) − 2x2] ≥ 0 (4.23)

(4.21), (4.22) leads to t ≥ p. Therefore if t 6= p, (4.23) results in

r(t + p) ≥ 2x2. (4.24)

This inequality also holds if t = p, because in this case (4.24) is equivalent to another

Bachas inequality

det
i,j=1,2

〈W (Cij)〉 = det

(

r x

x t

)

= rt − x2 ≥ 0. (4.25)

3Originally the Bachas equation for this configuration was considered in [14]
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Figure 9: These two figures show the configuration of C1, C2, C3 and their mirror images when the

interior of C1 +X is inside of the interior of C2 +X and C3 +X . The figure on the left shows (4.26),

while that on the right shows (4.27).

2

1

2

1

X

2
3

1 1

X

YY

Figure 10: These two figures show the configuration of C1, C2, C3 and their mirror images when

the interior of C1+X is outside the interior of C2+X and C3+X . The figure on the left shows (4.28),

while that on the right shows (4.29).

On the other hand, one can also derive (4.24) by the strong subadditivity. If the

interior of C1 + X is inside of the interior of C2 + X, we obtain

D12 ∩ D21 = D11, D12 ∪ D21 = D22 (4.26)

D13 ∩ D21 = D11, D13 ∪ D21 = D23 (4.27)

(See figure 9). If the interior of C1 + X is outside of the interior of C2 + X, we obtain

D12 ∪ D21 = D11, D12 ∩ D21 = D22 (4.28)

D13 ∪ D21 = D11, D13 ∩ D21 = D23 (4.29)

(see figure 10) .

In each case the strong subadditivity gives

x2 ≤ rt x2 ≤ rp. (4.30)

These inequalities lead to

r(t + p) ≥ 2x2 (4.31)

which is the same inequality as (4.24).
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In this case one can see that the strong subadditivity leads to (4.30), which is stronger

than that derived from Bachas inequality (4.24). However, this does not mean the strong

subadditivity is stronger than Bachas inequality. For example whether the inequality (4.22)

is derived from the strong subadditivity is a question that the authors are unable to answer

at the present time.

4.3 Verification from perturbation

In this subsection we give a perturbative proof of the strong subadditivity for small de-

formed Wilson loops, which we proposed at 3.3.

Now let us define loop C as C =
{

y ∈ RD|y = x(t)
}

. From the direct calculation one

can see that second order perturbation of log〈W (C)〉 in D dimensional Yang Mills theory

is proportional to

w(C) = −
∮

C
dsdtΛ(r(t, s))ẋ(t) · ẋ(s). (4.32)

where r(t, s) is

r(t, s)i = (x(t) − x(s))i , (4.33)

and Λ(r) is a propagator between x(t) and x(s):

Λ(r) =
1

[r2]D/2−1
(D > 2) (4.34)

Λ(r) = − log(|r|) (D = 2). (4.35)

We introduce small deformed Wilson loop C + δC =
{

y ∈ RD|y = x(t)+ δx(t)
}

. Then

we expand the change of Λ(r(t, s))ẋ(t) · ẋ(s) with respect to δx(t). To check whether the

strong subadditivity is satisfied we consider

∆(t, s) = log
〈W (C + δC1)〉〈W (C + δC2)〉
〈W (C)〉〈W (C + δC1 + δC2)〉

= w(C + δC1) + w(C + δC2) − w(C) − w(C + δC1 + δC2). (4.36)

Now we consider the case where δx1 and δx2 expand the original Wilson loop C, i.e. are

on the outside of ẋ. Furthermore, we let δx1 and δx2 do not expand the same point of C

i.e. we consider the case where

δx1(t)
iδx2(t)

j = 0. (4.37)

In the end of this section we will consider other cases.

By expanding ∆(t, s) by δx(t) we have

∆(t, s) = 2
(

δilδjmδkn + δkjδimδln − δklδimδjn − δijδkmδln
)

δx(t)i1δx(s)j2ẋ(t)kẋ(s)lΛ(r)mn,(4.38)

where Λmn(r) = ∂
∂rm

∂
∂rn Λ(r). Here we simplify the equation using convertibility of t and

s and use partial integration of t and s.

Let angles of δx1(t) and δx2(s) from x(t)−x(s) be a(t, s) and b(t, s) respectively, then

angles of ẋ(t), ẋ(s) from x(t) − x(s) are π/2 + a, π/2 + b, respectively (figure 11).
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x(t)

x(t)+ δ

x(s)+δ

b(t,s)

a(t,s)

 x(t)1

x(s)2

dx/ds

dx/dt

x(s)

Figure 11: Configuration of x(t), x(s), x(t) − x(s), ẋ(t), ẋ(s), δx1(t), and δx2(s)

Using a, b, we have

δx1(t) · δx2(s) = |δx1(t)||δx2(s)| cos(b − a) (4.39)

δx1(t) · ẋ(s) = |δx1(t)||ẋ(s)| cos(π/2 + b − a) (4.40)

δx2(s) · ẋ(t) = |δx2(s)||ẋ(t)| cos(π/2 + a − b) (4.41)

ẋ(t) · ẋ(s) = |ẋ(t)||ẋ(s)| cos(b − a). (4.42)

Using
∂

∂ri

∂

∂rj
Λ(r) =

r2δij − rirj

r3

∂Λ

∂|r| +
rirj

r2

∂2Λ

∂|r|2 , (4.43)

and substituting (4.34), (4.35), (4.39), (4.40), (4.41), (4.42), we have

∆(t, s) = |ẋ(t)||ẋ(s)||δx1(t)||δx2(s)|f(a, b)

f(a, b) = −2
1

r

∂Λ

∂|r| − 2
∂2Λ

∂|r|2 = −2
(D − 2)2

(r2)D/2
≤ 0 (D ≥ 2). (4.44)

Thus the inequality:

w(C) + w(C + δC1 + δC2) ≥ w(C + δC1) + w(x + δC2) (4.45)

is satisfied. This leads to

〈W (C)〉〈W (C + δC1 + δC2)〉 ≥ 〈W (C + δC1)〉〈W (C + δC2)〉. (4.46)

When D = 2, the inequality saturates. This is because in QCD2 Wilson loops without

crossing obey purely area law W (C) = e−
λ
2
A(C) at leading order of λ [10].

This inequality supports the strong subadditivity. Because in this case

Int(C + δC1) ∪ Int(C + δC2) = Int(C + δC1 + δC2) (4.47)

Int(C + δC1) ∩ Int(C + δC2) = Int(C), (4.48)
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where Int(C) is the interior of the loop C.

Thus far, we only considered cases where δx1 and δx2 both expand the original Wilson

loop and δx1(t)
iδx2(t)

j = 0. In general situations by considering loops C ′, C ′ + δC ′
1,and

C ′ + δC ′
2 as

C ′ = ∂
(

Int(C +δC1)∩Int(C +δC1)
)

, C ′+δC ′
1 = C +δC1, C ′+δC ′

2 = C +δC2 (4.49)

we have

C ′ + δC ′
1 + δC ′

2 = ∂
(

Int(C + δC1) ∪ Int(C + δC1)
)

, (4.50)

then we regain original situations. Using C ′, C ′ + δC ′
1, and C ′ + δC ′

2 we can again prove

〈W (C ′)〉〈W (C ′ + δC ′
1 + δC ′

2)〉 ≥ 〈W (C ′ + δC ′
1)〉〈W (C ′ + δC ′

2)〉, (4.51)

and this is equivalent to the strong subadditivity of C, C + δC1, and C + δC2 since we

have (4.49), (4.50).

5. Conclusion and outlook

In this paper, we proposed the strong subadditivity of Wilson loops, motivated by that of

entanglement entropy, and we checked whether it is satisfied in many situations.

Firstly, we checked in the strong coupling region assuming minimal surface conjecture.

Secondly, we checked in the case where Wilson loops are symmetric using Bachas inequality.

Thirdly, we gave a perturbative proof for small-deformed Wilson loops in the weak coupling

region.

These results suggest that the strong subadditivity, which has a profound physical

meaning, is satisfied in any coupling region for any Wilson loops. Furthermore second and

last results give us new verifications for the minimal surface conjecture.

In this paper, we have omitted the effects of scalar fields, which is necessary to consider

AdS/CFT. Because by deforming the geometry of AdS space one can make scalar fields

massive and thus decouple them [16]. One can also prove Bachas inequality for a gauge

theory with scalar fields as can be seen in [17]. Therefore, in this paper we neglect the

effect of scalar fields.

Many questions remain unsolved in this paper. The most important one is the proof of

the strong subadditivity for arbitrarily-shaped Wilson loops in an arbitrary coupling region.

As discussed, the strong subadditivity has a deep connection with that for entanglement

entropy and Bachas inequality. Both are derived from the positive definiteness of the

Hilbert space. Therefore, we consider that the strong subadditivity of Wilson loops might

be also a consequence of it.

In this paper we mainly treat Wilson loops in the same flat plane. The strong subad-

ditivity for more general cases is also a problem that remains.

As an outlook, we now consider one generalization of the strong subadditivity of Wilson

loops. We mention that for crossing loops in the same surface, by changing crossing loops

into uncrossing loops, we can change two Wilson loops around A and B into loops around

A ∪ B and A ∩ B (figure 12).
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A    B
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Figure 12: By changing crossing lines into uncrossing lines, we can change two Wilson loops

around A and B into those around A ∪ B and A ∩ B

C1

C2

C

D
B
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F

G

x

H

A

y

D
B

E

F

G

x

H

A

z y
z

C

C4

C3

Figure 13: Two sterically crossing rectangles (left) and their ”uncrossed” loops (right). In the

neighborhood of each crossing point, two loops are locally on the same surface.

Therefore one generalization of the strong subadditivity exists when two loops cross

sterically while in the neighborhood of every crossing point Pi there is a surface Si on

which two loops exist. The case shown in the left side of figure 12 is an example of this. In

this instance, one can generalize the strong subadditivity as an inequality between original

loops and loops whose crossing points are changed into uncrossing points (figure 13).

〈W (C1)〉〈W (C2)〉 ≤ 〈W (C3)〉〈W (C4)〉, (C1, C2
uncross−→ C3, C4) (5.1)

As we stated at the end of section 3.1, the generalized the strong subadditivity of

sterically-crossing loops (5.1) is also derived from the convexity of the cusp anomalous

dimensions (3.4).
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